django-sanction Documentation
Release 0.3

Demian Brecht

January 14, 2014

Contents

1 Overview 3
2 Configuration 5
2.1 Custom USer e e e e 5
2.2 Providers e e e e e 5
2.3 Authentication Backends e e e 6
24 Loginand Logged In URLs e e e e e e 6
3 User API 7
4 Refreshing Tokens 9
5 Other 11
5.1 Reference e e e e e 11
6 Indices and tables 13
Python Module Index 15

django-sanction Documentation, Release 0.3

Contents

* django-sanction
— Overview
— Configuration
% Custom User
x Providers
% Authentication Backends
* Login and Logged In URLs
User API
Refreshing Tokens
— Other
e Indices and tables

Contents 1

django-sanction Documentation, Release 0.3

2 Contents

CHAPTER 1

Overview

django-sanction is a Django app for the sanction Python package. As its parent package, the intention of this
package is to provide an incredibly easy-to-use Django OAuth 2.0 authorization/authentication app that is easy to grok.

This package makes no assumption as to what persistence mechanism you use. As such, no default custom user models
(or abc’s) are implemented. Duck-typing is taken advantage of here and a specific API is required of the custom user
model. This is defined below under User API. Integrating this package, defining the user model is likely where you’ll
spend most of your time.

note Since 0.3, this package has been refactored to be compatible with Django 1.5+. It is not backwards-
compatible with earlier Django versions.

https://github.com/demianbrecht/sanction

django-sanction Documentation, Release 0.3

4 Chapter 1. Overview

CHAPTER 2

Configuration

First, django_sanction must be added to your INSTALLED_APPS:

INSTALLED_APPS = (
#
"django_sanction’,
#

)

The URLs defined by d jango_sanct ion must be added and anchored to a root path. In your applications’ urls.py:

urlpatterns = patterns(’’,
url (r’"o/’, include (’django_sanction.urls’)),

)

The above will define the URLs ' login/<provider>’ and ' logout’ under the path /o. For example:
http://example.com/o/login/google.

2.1 Custom User

Whether you’re adding custom fields to the User implementation or not, you will need to implement a custom user
model (introduced in Django 1.5). This is due to the API requirements on the User as described in the next section.
The provided Django User is not abstract, so you cannot easily extend it without monkey-patching or other hackery.

To define a custom user model, use the AUTH_USER_MODEL variable in your settings file:

AUTH_USER_MODEL = ’'example.User’

2.2 Providers

Providers are defined as a dict (SANCTION_PROVIDERS) with the following fields:
e auth_endpoint: The providers’ authorization page
* token_endpoint: The URL where token exchange takes place

* resource_endpoint: Where a sanction client can request resources from

django-sanction Documentation, Release 0.3

e client_id: Your applications’ client ID, as generated by the provider
e client_secret: The applications’ secret, generated by the provider
* redirect_uri: The expected URL that the provider should return the user to upon authorization.
* scope: An iterable of authorization items required by your application.
* auth_params: Additional key/value pairs to send to the authorization page.
Each entry should be keyed with a unique identifier that will be used throughout the rest of the application:

SANCTION_PROVIDERS = {

"google’: {
"auth_endpoint’: ’"https://accounts.google.com/o/ocauth2/auth’,
"token_endpoint’: "https://accounts.google.com/o/oauth2/token’,
"resource_endpoint’: "https://www.googleapis.com/oauth2/v1l’,
"client_id’: 7421833888173.apps.googleusercontent.com’,
"client_secret’: ’'VuegKFZyz-aoL4rQFleEIT173’,
"redirect_uri’: 'http://localhost:8080/0/login/google’,
"scope’: ('email’, ’'https://www.googleapis.com/auth/userinfo.profile’,),
"auth_params’: {’access_type’: "offline’}

}’

" facebook’ : {
"auth_endpoint’: "https://www.facebook.com/dialog/oauth’,
"token_endpoint’: "https://graph.facebook.com/ocauth/access_token’,
"resource_endpoint’: ’'https://graph.facebook.com’,
"scope’: ('email’,),
"parser’: lambda data: dict (parse_gsl (data)),
"client_id’: 7152107704926343",
"client_secret’: "80c8ledd7d5bc68ecc8cfldal0213382e’,
"redirect_uri’: 'http://localhost:8080/0/login/facebook’,

2.3 Authentication Backends

Django has to know about the backend to be used in order to authenticate OAuth 2.0 users. The following example
will run the user through d jango—-sanction‘s authentication backend and then will fall back to the built-in Django
backend (should be added to your settings file):

AUTHENTICATION_BACKENDS = (
"django_sanction.backends.AuthenticationBackend’,
"django.contrib.auth.backends.ModelBackend’,

2.4 Login and Logged In URLs

While not strictly required, LOGIN_URL and LOGIN_REDIRECT_URL should be defined in your application set-
tings. The former defines where a user may log in from and the latter defines where a user is redirected to upon
successful authentication:

LOGIN_URL = '/’
LOGIN_REDIRECT_URL = ’/profile’

6 Chapter 2. Configuration

CHAPTER 3

User API

As django-sanction does not make any assumptions about how you’re going to persist your data, there is not a generic
way to provide an interface. As such, we rely on duck typing. The following API must be implemented by your user
object:

class User (object) :
def current_provider(self, request):
"m"r Get the current provider

Returns the current provider used by the current request’s user

mmn

pass

@staticmethod
def fetch_user (provider, client):
""" Fetches the user from the OAuth 2.0 provider

This should return an instance of a ‘‘User'' based on data from the
provider resource.

mon

pass

@staticmethod

def get_user (user_id)
""" Returns a user object
Retrieves an instance of a '‘‘User''

application-specific ‘'

mon

(or '‘‘None‘'') given the
user_id"‘"'.

pass

Implementing the User class will likely be where you’ll spend the most of your time while integrating
django_sanction

django-sanction Documentation, Release 0.3

8 Chapter 3. User API

CHAPTER 4

Refreshing Tokens

Depending on how you use the OAuth 2.0-authorized user content, you may or may not have to worry about refreshing
tokens. If you’re simply using it to generate user accounts with data such as email addresses and name, then you likely
won’t have to worry about refreshing it. However, if your app interacts with an OAuth 2.0 provider after a token has
expired (i.e post to a users’ Facebook wall), then this is something that you’ll have to worry about.

Refreshing tokens is entirely up to the application (there are far too many deviations or simply non-conformance among
the providers to provide a general solution). Token refreshes themselves are outside the scope of this document. Please
consult the documentation provided by the OAuth 2.0 provider.

note The example app demonstrates how to go about refreshing tokens for Facebook and Google.

django-sanction Documentation, Release 0.3

10 Chapter 4. Refreshing Tokens

CHAPTER 5

Other

5.1 Reference

5.1.1 Authentication backend

5.1.2 URLs

The URLs defined by django-sanction
django_sanction should be initialized in your project’s urls.py as such:

urlpatterns = patterns(’’,
url (r’"o/’, include (’django_sanction.urls’)),

)

The prefix o can be replaced by any path you would like to use for the sanction auth flow. Two views are registered
under this path:

e [prefix]/logout/, and
e [prefix]/login/ (\w+)

note The parameter for the login flow must match a key used in SANCTION_PROVIDERS in your project
settings file.

5.1.3 Views

11

django-sanction Documentation, Release 0.3

12 Chapter 5. Other

CHAPTER 6

Indices and tables

* genindex
* modindex

e search

13

django-sanction Documentation, Release 0.3

14 Chapter 6. Indices and tables

Python Module Index

d

django_sanction.urls, 11

15

	Overview
	Configuration
	Custom User
	Providers
	Authentication Backends
	Login and Logged In URLs

	User API
	Refreshing Tokens
	Other
	Reference

	Indices and tables
	Python Module Index

